Factors Limiting New England Cottontail (Sylvilagus transitionalis) Populations in New York: Implications for Habitat Restoration

Principal Investigators: Jonathan Cohen, Chris Whipps, Sadie Ryan
Graduate Students: Amanda Cheeseman, Ph.D.
Emily Gavard, M.S.
DEC Collaborators: Dan Rosenblatt, Paul Novak

Goals
- Effects of invasive vegetation and eastern cottontail on New England cottontail restoration
Project Objectives

- Population and Site Monitoring
- Resource Selection
- Survival / recruitment
- Hunting
- Invasive vegetation
- Eastern cottontails
- Management strategies
- Home Range (adult and juvenile)
- Dispersal (adult and juvenile)
- Radio-tracking
- Genetic (microsatellites)
- Parasites and Nutrition

Emily Reuber

Trapping Success

NEC/ Total Unique Adults and Juveniles:	110/196
NEC/Total Unique Collared and Transmittered	110/183
NEC/Total Adults Collared:	83/143
NEC/Total Young Transmittered:	32/55
NEC/ Total On Air Adults	21/47
NEC/ Total On Air Juveniles	0/1
Cranberry Mountain

Trapping very successful this year
Captured NEC in back larger management area (20 months post cut)

<table>
<thead>
<tr>
<th>08- Cranberry</th>
<th>NEC 2014</th>
<th>EC 2014</th>
<th>NEC 2015</th>
<th>EC 2015</th>
<th>Total NEC</th>
<th>Total EC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Patch Extinctions of NEC at
- Glynnwood
- Taconic-301 (recolonized)
- Wiccopee (recolonized?)

Red sites → shift from NEC to EC dominated in 2015

Single Site (Appalachian Trail) has more NEC than EC in 2015

Trapping Notes:
- Same areas trapped
- Similar Effort - Effort increased when NEC not trapped
- NEC Trapped at Wiccopee and Route 9 were in January 2015

<table>
<thead>
<tr>
<th>Annual Trapping Trends</th>
<th>NEC 2014</th>
<th>EC 2014</th>
<th>NEC 2015</th>
<th>EC 2015</th>
<th>Total NEC</th>
<th>Total EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appalachian Trail</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Glynnwood</td>
<td>14</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Taconic-301</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Garrison Investments</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Indian Brook Road</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Wiccopee</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>Route 9</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Cranberry</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Ninham-Gypsy Trail</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Ninham-Nichols</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Wonder Lake</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Wonder Lake West</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Charcoal Burners</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hubbard Lodge</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>69</td>
<td>25</td>
<td>34</td>
<td>50</td>
<td>103</td>
<td>75</td>
</tr>
<tr>
<td>Total Juveniles</td>
<td>26</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>Total Adults</td>
<td>43</td>
<td>19</td>
<td>30</td>
<td>44</td>
<td>73</td>
<td>63</td>
</tr>
</tbody>
</table>
Habitat Use

Movements

NEC
- Median \(\text{Summer} \) = 58 meters, \(N = 840 \)
- Median \(\text{Winter} \) = 37 meters, \(N = 626 \)

EC
- Median \(\text{Summer} \) = 54 meters, \(N = 283 \)
- Median \(\text{Winter} \) = 43 meters, \(N = 294 \)

Lit suggests NEC more reluctant to move outside cover → less cover in winter

Resource Selection

Part 1: Structure

- Logistic regression w/ random effect
- Examined selection for structure and vegetation composition

<table>
<thead>
<tr>
<th></th>
<th>Stems</th>
<th>Vegetative Canopy</th>
<th>Herbaceous Height</th>
<th>Woody Canopy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Both</td>
<td>Both</td>
<td>NEC</td>
<td>EC</td>
</tr>
<tr>
<td>Leaf on</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Leaf off</td>
<td>+ +</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Resource selection
Part 2: Shrub Species

- Logistic regression w/ random effect
- Examined selection for structure and vegetation composition

<table>
<thead>
<tr>
<th></th>
<th>Rose</th>
<th>Native</th>
<th>Barberry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Both</td>
<td>Both</td>
<td>Leaf on</td>
</tr>
<tr>
<td>NEC</td>
<td>++</td>
<td>0</td>
<td>++</td>
</tr>
<tr>
<td>EC</td>
<td>-</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

Habitat Use
Home Range Size

New England cottontail
- 95% Isopleth: 1.60 ± 1.75 hectares, n = 23
- 50% Isopleth: 0.45 ±0.41 hectares, n = 23
Habitat Use
Home Range Size

New England cottontail
- 95% Isopleth: 1.60 ± 1.75 hectares, n = 23
- 50% Isopleth: 0.45 ± 0.41 hectares, n = 23

Eastern cottontail
- 95% Isopleth: 1.27 ± 0.88 hectares, n = 11
- 50% Isopleth: 0.33 ± 0.16 hectares, n = 11

No interspecific differences:
- 95%: t = -0.75, df = 31.83, p-value = 0.46, n = 34
- 50%: t = -1.09, df = 31.51, p-value = 0.29, n = 34
Implications of demographic study so far

- Species turnover
 - EC push out NEC after poor winters, need to manage existing sites not just newly created sites
- Seasonal habitat changes
 - NEC using different summer habitat → suggests need to manage for patches of young shrubland/grassland within larger shrubland management patches
 - Interspecific differences in habitat selection → manage in favor of NEC
- Newly identified habitat types
 - NEC using residential areas bordering shrubland
 - NEC are using grassland/young shrubland
 - NEC using human structures and outbuilding as daytime/winter refugia
- Contributions of road and hunting mortality
 - Implications for population persistence at certain sites
- Predator communities
 - Naturalized coyote potentially increasing predation on NEC → Creating predator pits? Increasing site extinctions
- Use of non-native vegetation
 - NEC using invasive rose and barberry, may benefit species

Genetic Analysis of NEC

- Identify unique individuals from ear clips (trapped/collared rabbits), and from fecal pellets.
- Initial plan to only look at ear clips (currently 75+ NEC)
- Now all pellets included (489 NEC)

EAR DATA

<table>
<thead>
<tr>
<th>DNA Sample Site</th>
<th>Lsa1 (Blue)</th>
<th>Lsa8 (Yellow)</th>
<th>Sat12 (Green)</th>
<th>INRA016 (Blue)</th>
<th>Genetic Sex ID</th>
<th>SIR1</th>
<th>StrQ2</th>
<th>StrQ32</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC16</td>
<td>169, 169</td>
<td>185, 185</td>
<td>121, 121</td>
<td>185, 185</td>
<td>100</td>
<td>216, 220</td>
<td>135, 147</td>
<td>174, 174</td>
</tr>
<tr>
<td>NEC18</td>
<td>167, 171</td>
<td>183, 185</td>
<td>121, 125</td>
<td>183, 185</td>
<td>101</td>
<td>216, 220</td>
<td>135, 159</td>
<td>174, 174</td>
</tr>
<tr>
<td>NEC24</td>
<td>169, 169</td>
<td>183, 185</td>
<td>121, 129</td>
<td>183, 185</td>
<td>100</td>
<td>216, 220</td>
<td>147, 147</td>
<td>174, 174</td>
</tr>
<tr>
<td>NEC44</td>
<td>167, 169</td>
<td>178, 185</td>
<td>116, 129</td>
<td>185, 185</td>
<td>101</td>
<td>216, 218</td>
<td>147, 163</td>
<td>174, 174</td>
</tr>
<tr>
<td>NEC23</td>
<td>167, 169</td>
<td>178, 185</td>
<td>121, 121</td>
<td>185, 185</td>
<td>101</td>
<td>220, 220</td>
<td>150, 159</td>
<td>174, 174</td>
</tr>
<tr>
<td>NEC34</td>
<td>165, 169</td>
<td>178, 185</td>
<td>116, 121</td>
<td>185, 185</td>
<td>101</td>
<td>216, 218</td>
<td>141, 169</td>
<td>174, 166</td>
</tr>
<tr>
<td>NEC31</td>
<td>165, 171</td>
<td>178, 178</td>
<td>121, 125</td>
<td>185, 185</td>
<td>100</td>
<td>218, 220</td>
<td>141, 169</td>
<td>174, 166</td>
</tr>
<tr>
<td>NEC64</td>
<td>165, 167</td>
<td>178, 178</td>
<td>121, 129</td>
<td>183, 185</td>
<td>100</td>
<td>220, 220</td>
<td>141, 159</td>
<td>174, 186</td>
</tr>
</tbody>
</table>
Genetic Analysis of NEC

- Pellet data suggest multiple resampling of individuals
- Some pellets match trapped rabbit DNA

PELLET DATA

<table>
<thead>
<tr>
<th>DNA Sample</th>
<th>Site</th>
<th>Ls21 (Blue)</th>
<th>Ls28 (Yellow)</th>
<th>Sat12 (Green)</th>
<th>INRA016 (Blue)</th>
<th>Genetic Sex ID</th>
<th>Identical profile(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJG150</td>
<td>6</td>
<td>167, 169</td>
<td>178, 185</td>
<td>129, 128</td>
<td>185, 185</td>
<td>101</td>
<td>EJG150, NEC14</td>
</tr>
<tr>
<td>EJG155</td>
<td>6</td>
<td>167, 169</td>
<td>178, 185</td>
<td>129, 133</td>
<td>185, 185</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>EJG157</td>
<td>6</td>
<td>169, 169</td>
<td>185, 185</td>
<td>133, 133</td>
<td>185, 185</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>EJG159</td>
<td>6</td>
<td>167, 157</td>
<td>185, 185</td>
<td>133, 133</td>
<td>185, 185</td>
<td>101</td>
<td>EJG159, EJG160, EJG161, NEC12</td>
</tr>
<tr>
<td>EJG160</td>
<td>6</td>
<td>167, 157</td>
<td>185, 185</td>
<td>133, 133</td>
<td>185, 185</td>
<td>101</td>
<td>EJG159, EJG160, EJG161, NEC12</td>
</tr>
<tr>
<td>EJG161</td>
<td>6</td>
<td>167, 157</td>
<td>185, 185</td>
<td>133, 133</td>
<td>185, 185</td>
<td>101</td>
<td>EJG159, EJG160, EJG161, NEC12</td>
</tr>
<tr>
<td>EJG162</td>
<td>6</td>
<td>167, 157</td>
<td>178, 185</td>
<td>129, 123</td>
<td>185, 185</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>EJG163</td>
<td>6</td>
<td>167, 169</td>
<td>178, 185</td>
<td>129, 133</td>
<td>183, 185</td>
<td>100</td>
<td>EJG163, EJG164</td>
</tr>
<tr>
<td>EJG164</td>
<td>6</td>
<td>167, 169</td>
<td>185, 185</td>
<td>129, 133</td>
<td>183, 185</td>
<td>100</td>
<td>EJG163, EJG164</td>
</tr>
<tr>
<td>EJG166</td>
<td>6</td>
<td>167, 169</td>
<td>185, 185</td>
<td>129, 133</td>
<td>185, 185</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>EJG169</td>
<td>6</td>
<td>167, 157</td>
<td>185, 185</td>
<td>129, 133</td>
<td>185, 185</td>
<td>101</td>
<td>EJG169, EJG170</td>
</tr>
</tbody>
</table>

Genetic population structure (between/within patches)

Dispersal

Resampling individuals for parasite work
Parasites and Nutrition

Gastrointestinal Parasites
- Species present include nematode (13 species), trematode (1 species) and protozoa (6 species?)
- 91% of all fecal pellets showed parasitism
Eimeria spp.
- 86% of NEC
- 89% of EC

Obeliscoides cuniculi
- 9% of NEC
- 17% of EC
Trichostrongylus spp.

- 22% of NEC
- 55% of EC

Parasite: Species Differences

![Graph showing parasite prevalence](image)
Future Directions -

- Long term population monitoring trends
- Monitor new management areas: adaptive management
- EC abundance
 - Impacts on NEC abundance and recruitment
- Impacts of deer browse on young forest regeneration and suitability for NEC
 - Current use vs. availability study leads into this well
- Diet analysis with use/availability analysis
- Impacts of naturalized and introduced predators (coyotes, feral cats) on NEC populations
 - Seasonal shifts in predation
- Hormones
 - Monitor reproduction
- Cooperative studies with Roger Williams and Queen’s zoo
 - Nesting sites, interspecific breeding, maternal care (better application to field studies)

Acknowledgments

Dan Rosenblatt
Paul Novak
Jesse Jaycox
Scott Silver

Conine Michaud
Katrina Alger
Kelly Deweese
Mark Ratchford
John DeCotis
Tamara Hillman
Emily Reuber

Edna Bailey Sussman Foundation